3.18.43 \(\int (d+e x)^m (a^2+2 a b x+b^2 x^2)^p \, dx\) [1743]

Optimal. Leaf size=85 \[ \frac {\left (-\frac {e (a+b x)}{b d-a e}\right )^{-2 p} (d+e x)^{1+m} \left (a^2+2 a b x+b^2 x^2\right )^p \, _2F_1\left (1+m,-2 p;2+m;\frac {b (d+e x)}{b d-a e}\right )}{e (1+m)} \]

[Out]

(e*x+d)^(1+m)*(b^2*x^2+2*a*b*x+a^2)^p*hypergeom([-2*p, 1+m],[2+m],b*(e*x+d)/(-a*e+b*d))/e/(1+m)/((-e*(b*x+a)/(
-a*e+b*d))^(2*p))

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {660, 72, 71} \begin {gather*} \frac {\left (a^2+2 a b x+b^2 x^2\right )^p (d+e x)^{m+1} \left (-\frac {e (a+b x)}{b d-a e}\right )^{-2 p} \, _2F_1\left (m+1,-2 p;m+2;\frac {b (d+e x)}{b d-a e}\right )}{e (m+1)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^m*(a^2 + 2*a*b*x + b^2*x^2)^p,x]

[Out]

((d + e*x)^(1 + m)*(a^2 + 2*a*b*x + b^2*x^2)^p*Hypergeometric2F1[1 + m, -2*p, 2 + m, (b*(d + e*x))/(b*d - a*e)
])/(e*(1 + m)*(-((e*(a + b*x))/(b*d - a*e)))^(2*p))

Rule 71

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c
 - a*d))^n))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-d/(b*c - a*d), 0]))

Rule 72

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]), Int[(a + b*x)^m*Simp[b*(c/(b*c - a*d)) + b*d*(x/(b*c -
a*d)), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 660

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
 c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin {align*} \int (d+e x)^m \left (a^2+2 a b x+b^2 x^2\right )^p \, dx &=\left (\left (a b+b^2 x\right )^{-2 p} \left (a^2+2 a b x+b^2 x^2\right )^p\right ) \int \left (a b+b^2 x\right )^{2 p} (d+e x)^m \, dx\\ &=\left (\left (\frac {e \left (a b+b^2 x\right )}{-b^2 d+a b e}\right )^{-2 p} \left (a^2+2 a b x+b^2 x^2\right )^p\right ) \int (d+e x)^m \left (-\frac {a e}{b d-a e}-\frac {b e x}{b d-a e}\right )^{2 p} \, dx\\ &=\frac {\left (-\frac {e (a+b x)}{b d-a e}\right )^{-2 p} (d+e x)^{1+m} \left (a^2+2 a b x+b^2 x^2\right )^p \, _2F_1\left (1+m,-2 p;2+m;\frac {b (d+e x)}{b d-a e}\right )}{e (1+m)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 75, normalized size = 0.88 \begin {gather*} \frac {\left (\frac {e (a+b x)}{-b d+a e}\right )^{-2 p} \left ((a+b x)^2\right )^p (d+e x)^{1+m} \, _2F_1\left (1+m,-2 p;2+m;\frac {b (d+e x)}{b d-a e}\right )}{e (1+m)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^m*(a^2 + 2*a*b*x + b^2*x^2)^p,x]

[Out]

(((a + b*x)^2)^p*(d + e*x)^(1 + m)*Hypergeometric2F1[1 + m, -2*p, 2 + m, (b*(d + e*x))/(b*d - a*e)])/(e*(1 + m
)*((e*(a + b*x))/(-(b*d) + a*e))^(2*p))

________________________________________________________________________________________

Maple [F]
time = 0.54, size = 0, normalized size = 0.00 \[\int \left (e x +d \right )^{m} \left (b^{2} x^{2}+2 a b x +a^{2}\right )^{p}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^m*(b^2*x^2+2*a*b*x+a^2)^p,x)

[Out]

int((e*x+d)^m*(b^2*x^2+2*a*b*x+a^2)^p,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(b^2*x^2+2*a*b*x+a^2)^p,x, algorithm="maxima")

[Out]

integrate((b^2*x^2 + 2*a*b*x + a^2)^p*(x*e + d)^m, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(b^2*x^2+2*a*b*x+a^2)^p,x, algorithm="fricas")

[Out]

integral((b^2*x^2 + 2*a*b*x + a^2)^p*(x*e + d)^m, x)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: HeuristicGCDFailed} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**m*(b**2*x**2+2*a*b*x+a**2)**p,x)

[Out]

Exception raised: HeuristicGCDFailed >> no luck

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(b^2*x^2+2*a*b*x+a^2)^p,x, algorithm="giac")

[Out]

integrate((b^2*x^2 + 2*a*b*x + a^2)^p*(x*e + d)^m, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (d+e\,x\right )}^m\,{\left (a^2+2\,a\,b\,x+b^2\,x^2\right )}^p \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^m*(a^2 + b^2*x^2 + 2*a*b*x)^p,x)

[Out]

int((d + e*x)^m*(a^2 + b^2*x^2 + 2*a*b*x)^p, x)

________________________________________________________________________________________